MRI-based Medical Nanorobotic Platform for the Control of Magnetic Nanoparticles and Flagellated Bacteria for Target Interventions in Human Capillaries
نویسندگان
چکیده
Medical nanorobotics exploits nanometer-scale components and phenomena with robotics to provide new medical diagnostic and interventional tools. Here, the architecture and main specifications of a novel medical interventional platform based on nanorobotics and nanomedicine, and suited to target regions inaccessible to catheterization are described. The robotic platform uses magnetic resonance imaging (MRI) for feeding back information to a controller responsible for the real-time control and navigation along pre-planned paths in the blood vessels of untethered magnetic carriers, nanorobots, and/or magnetotactic bacteria (MTB) loaded with sensory or therapeutic agents acting like a wireless robotic arm, manipulator, or other extensions necessary to perform specific remote tasks. Unlike known magnetic targeting methods, the present platform allows us to reach locations deep in the human body while enhancing targeting efficacy using real-time navigational or trajectory control. The paper describes several versions of the platform upgraded through additional software and hardware modules allowing enhanced targeting efficacy and operations in very difficult locations such as tumoral lesions only accessible through complex microvasculature networks.
منابع مشابه
Magnetic Graphene Oxide Nanocarrier as a drug delivery vehicle for MRI monitored magnetic targeting of rat brain tumors
Introduction: Glioblastoma multiform is the most common malignant brain tumor, with an invasive nature. Despite the development of conventional therapies such as surgery, radiotherapy and chemotherapy, because of high recurrence rates, the prognosis remains very poor. Over the last decade, nanotechnology has represented an innovative method as nanoparticle-based drug delivery ...
متن کاملA New Theranostic System Based on Gd2O3 NPs coated Polycyclodextrin Functionalized Glucose for Molecular Magnetic Resonance Imaging (MMRI).
Introduction: Recent advances in nanoscience and biomedicine have attracted tremendous attention over the past decade to design and construct multifunctional nanoparticles that combine targeting, therapeutic, and diagnostic functions with a single platform to overcome the problems of conventional techniques for diagnosis and therapy with minimal toxicity. Materials ...
متن کاملMRI-guided nanorobotic systems for therapeutic and diagnostic applications.
This review presents the state of the art of magnetic resonance imaging (MRI)-guided nanorobotic systems that can perform diagnostic, curative, and reconstructive treatments in the human body at the cellular and subcellular levels in a controllable manner. The concept of an MRI-guided nanorobotic system is based on the use of an MRI scanner to induce the required external driving forces to prop...
متن کاملDNA Nanotubes Coupled with Magnetic Nanoparticles as a Platform for Colorimetric Biosensors
This study describes the fabrication techniques for two forms of magnetic DNA nanotubes (MDNTs) and their applications as platforms for developing colorimetric assays. The first form of MDNTs was DNTs filled-up with magnetic nanoparticles (MNPs) and the second one was DNTs arayed with MNPs on their extrior surfaces. Then the both forms of MDNTs were employed as platforms for attaching a specifi...
متن کاملMagnetic hyperthermia and MRI relaxometry with dendrimer coated iron oxide nanoparticles
Introduction: Recently, some studies have focused on dendrimer nanopolymers as an MRI contrast agent or a vehicle for gene and drug delivery. Considering the suitable properties of these materials, they are appropriate candidates for coating iron oxide nanoparticles which are applied to magnetic hyperthermia. To the best of our knowledge, the novelty of this study is the inves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The International journal of robotics research
دوره 28 9 شماره
صفحات -
تاریخ انتشار 2009